

5 - 8 DECEMBER 2022 DUBAI WORLD TRADE CENTRE

Why Products Do Not Perform as Rated Hassan Abou Jawhar & Charles

Meyers

Air Movement and Control Association (AMCA) International, Inc,

Outline

Introduction to AMCA

What is a product rating?

How products are tested

Manufacturer lab

Independent lab

3rd-Party Certified Ratings

How installations impact products

Organized by

dmg::events

The Air Movement and Control Association Mission:

To advance the health, growth, and integrity of the air systems industry.

Global reach. Local touch.

Truly international membership

AMCA Scope of Products

AMCA Value Chain

What AMCA provides members and the industry

What is a Product Rating?

Air Movement Products:

 A statement of pressure performance and power vs airflow at a given speed at standard inlet air density or other specified density

Air Control Products:

 Data generated from tested products used to derive the published information

Who Verifies? 3rd Party Certification Bodies

Organized by

dmg::events

How are the Ratings Developed

Testing to industry-recognized performance standards

- Lab at manufacturer's facility
 - 3rd-Party independent lab

Organized by

Read statements next to performance data to understand how products were tested

- Installation Setup
- Appurtenances
- Nominal Speed
- Transmission Losses

#THEBIG5EXHIBITION www.thebig5.ae Organized by

Benefits of Participating in a 3rd Party Certification Program

Installation Impacts Products

Many factors can play a role in how a product performs

- Design-phase problems (small equipment rooms = system effect)
- Incorrect sizing, selection (fan rated with static pressure but applied in a total-pressure situation)
- Contractor substitutions (often less expensive (smaller fan, for example)
- Design was changed but not the product specification (value engineering, for example)
- Installer had to work around unforeseen obstacles (ducts routed around obstructions; objects installed with less clearance for louver airflow)
- Installer quality issues (leaky ducts, incorrect wiring, upside down louvers, etc.)

Organized by

Organized by

Organized by

Organized by

Organized by

Fan Law and How They Impact You

Example: Fan operating at 1000 RPM, 3000 CFM, 0.5" wg SP, 0.5BHP

Tenant asks for more air flow. Tech determines an increase of 10% in speed will meet their needs

<u>Fan Law #1</u>

CFM varies directly with RPM

Fan Law #2

SP varies with the square of the RPM

Fan Law #3

HP varies with the cube of the RPM

Organized by

dmg::events

Fan Law #1

 $CFM_1/CFM_2 = RPM_1/RPM_2$ OR $CFM_2 = (RPM_2/RPM_1) \times CFM_1$

Original points of operation Fan operating at 1000 RPM, 3000 CFM, 0.5" wg SP, 0.5BHP

Fan Law #1

CFM varies directly with RPM $CFM_2 = (1100/1000) \times 3000 = 3300$ 10% increase

Organized by

dmg::events

Fan Law #2

 $SP_1/SP_2 = (RPM_1/RPM_2)^2$ OR $SP_2 = (RPM_2/RPM_1)^2 \times SP_1$

Original points of operation Fan operating at 1000 RPM, 3000 CFM, 0.5" wg SP, 0.5BHP

Fan Law #2

SP varies with the square of the RPM $SP_2 = (1100/1000)^2 \times 0.5 = .605'' \text{ wg}$ 21% increase in static pressure

Organized by

dmg::events

Fan Law #3

 $HP_1/HP_2 = (RPM_1/RPM_2)^3$ OR $HP_2 = (RPM_2/RPM_1)^3 x HP_1$

Original points of operation Fan operating at 1000 RPM, 3000 CFM, 0.5" wg SP, 0.5BHP

Fan Law #3

HP varies with the cube of the RPM $HP_2 = (1100/1000)^3 \times 0.5 = .6655$ BHP 33% increase in horsepower

Organized by

dmg::events

Something to Remember

Seemingly small requests can have a large impact on entire system Can shorten the life of product

Make the assessment - pay now to implement the correct products or pay later in costly repairs

Organized by

Conclusion

Checklist for increasing confidence in product performance

- ✓ Tested in accordance with a consensus-based standard
- ✓ Tested in an accredited manufacturer laboratory or at a third-party testing laboratory
- ✓ Rating independently verified by a third party
- \checkmark Purchased product is what was specified, not substituted
- ✓ Installation was per original design; not installed in a compromised design or installation
- ✓ System commissioning design, specification, installation, operation all undergo quality assurance
- ✓ Product certification not just tested in accordance to

Organized by

Talks

Project Management

Solar

Stone Design

Technology

Urban Design & Landscape