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Part II

Fiber-Reinforced Polymer Bars as Compression Reinforcements
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• Epoxy coated rebars

• Galvanized rebars

• Powder resin coatings

• Polymer-impregnated 

concrete

• Alloyed steel bars 

Some solutions
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• For the same longitudinal reinforcement ratio, 
compared to steel-RC columns, FRP-RC 
columns:

▪ Show 1.5% to 20% lower capacities under 
concentric loads

▪ Show almost equal capacities at large load 
eccentricities

• Contribution of FRP bars to capacity of 
concentrically loaded columns:

▪ 3% to 14% for glass-FRP (GFRP) bars 

▪ 6% to 19% for carbon-FRP (CFRP) bars

compared to 12%–16% for steel bars

• For eccentrically-loaded columns, some studies 
reported that FRP contribution should be 
neglected, while other studies reported otherwise
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Column 

Reinforcement

Ultimate load 

capacity, Pu

(kN)

Force 

carried by 

bars, Pbars

(kN)

Pbars / Pu (%) 

Steel 1305 409 31.4

Basalt FRP 1077 117 10.9

Glass FRP 1046 110 10.5

Basalt FRP (higher 

reinf. ratio)
1080 192 17.8

Concentrically-Loaded Columns



ANALYTICAL STUDY | Design Equations

Concrete 

contribution
Steel 

contribution

FRP-RC Columns Proposed Design Equations Eq. no.

𝑃𝑝𝑟𝑒𝑑 = 0.85𝑓𝑐
′ 𝐴𝑔 − 𝐴𝑓 1

𝑃𝑝𝑟𝑒𝑑 = 0.85𝑓𝑐
′𝐴𝑔 2

𝑃𝑝𝑟𝑒𝑑 = 0.85𝑓𝑐
′ 𝐴𝑔 − 𝐴𝑓 + 𝟎. 𝟐𝟓𝒇𝒇𝒖𝑨𝒇 3

𝑃𝑝𝑟𝑒𝑑 = 0.85𝑓𝑐
′ 𝐴𝑔 − 𝐴𝑓 + 𝟎. 𝟑𝟓𝒇𝒇𝒖𝑨𝒇 4

𝑃𝑝𝑟𝑒𝑑 = 0.85𝑓𝑐
′ 𝐴𝑔 − 𝐴𝑓 + 𝜺𝒄𝑬𝒇𝑨𝒇 5

𝑃𝑝𝑟𝑒𝑑 = 0.85𝑓𝑐
′ 𝐴𝑔 − 𝐴𝑓 + 𝟎. 𝟎𝟎𝟑𝑬𝒇𝑨𝒇 6

𝑃𝑝𝑟𝑒𝑑 = 0.85𝑓𝑐
′ 𝐴𝑔 − 𝐴𝑓 + 𝟎. 𝟎𝟎𝟐𝟒𝑬𝒇𝑨𝒇 7

𝑃𝑝𝑟𝑒𝑑 = 0.85𝑓𝑐
′ 𝐴𝑔 − 𝐴𝑓 + 𝟎. 𝟎𝟎𝟑𝟓𝑬𝒇𝑨𝒇

α1 = 0.85 − 0.0015𝑓𝑐
′ ≥ 0.67

8

𝑃𝑝𝑟𝑒𝑑 = 0.85𝑓𝑐
′ 𝐴𝑔 − 𝐴𝑓 + 𝟎. 𝟎𝟎𝟐𝑬𝒇𝑨𝒇 9

𝑃𝑝𝑟𝑒𝑑 = 0.85𝑓𝑐
′ 𝐴𝑔 + 𝟎. 𝟎𝟎𝟐𝑬𝒇𝑨𝒇 10

For steel-RC columns under 

concentric load:

1.

Neglect FRP 

contribution

2.

Reduced FRP 

contribution

3.

Limit maximum 

compressive 

strain in

FRP bars to 

concrete crushing 

strain



ANALYTICAL STUDY | Design Equations

1 2 3

BFRP-RC Columns

Equation no.
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GFRP-RC Columns

Equation no.

1      2      3      4      5      6      7      8      9      10

1 2 3



ANALYTICAL STUDY | Load-Moment Interaction Diagrams

GFRP-RC, ρ = 2.48%

(Group C)

BFRP-RC, ρ = 3.88%

(Group D)

BFRP-RC, ρ = 2.48%

(Group B)

Scenario 1: ignores FRP bars contribution

Scenario 2: considers FRP bars contribution 



Conclusions
• Maximum of 5% difference in load-carrying capacities between 

BFRP-RC and GFRP-RC columns

• Concentrically loaded BFRP-RC and GFRP-RC columns 

exhibited 17% and 20% less capacity than steel-RC control 

columns, respectively

• FRP bars contributed about 11% to the ultimate capacities of 

concentrically-loaded columns (lower than steel bars contribution 

of 31.4%)

• Ignoring the strength contribution of FRP bars resulted in 

conservative capacity predictions

• The current Canadian highway design code (CSA S6-19) 

recommendation on limiting compression strains of FRP bars to 

2,000 μɛ yielded reasonable predictions of FRP-RC columns 

capacity

• Strength contribution of FRP bars increased as load eccentricity 

increased, as was confirmed by interaction diagrams for FRP-RC 

columns
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Reactive Magnesia Cements
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• Concrete is one of the most consumed materials on Earth; second only to water

• It is the most widely used construction material

• However, concrete is not environmentally-friendly because of Ordinary Portland Cement (OPC)

• OPC production alone accounts for 7% of global carbon emissions

• Solutions for low-carbon concretes:

1. Use of alternative fuels to coal for OPC production

2. Replacement of OPC with industrial by-products (supplementary cementitious materials)

3. Replacement of OPC with alterative binders

29

Introduction| Background
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• ‘Reactive MgO cement’ (RMC) is a promising low or even negative carbon solution

• It is currently being produced by one of two ways:

1. Calcination of MgCO3

2. From seawater

Walling, S. A., & Provis, J. L. (2016). Magnesia-based cements: a journey of 150 years, and cements for the future?. Chemical reviews, 116(7), 4170-

4204.

Overview on Reactive MgO Cement

Processing brackish 

water from desalination 

plants

Calcination of 

naturally deposited 

MgCO3



• RMC absorbs CO2 through its hydration and carbonation processes:

• The resulting hydrated magnesium carbonates form cohesive binding agents

• RMC usually has higher water demand and lower compressive strength than OPC

31
Walling, S. A., & Provis, J. L. (2016). Magnesia-based cements: a journey of 150 years, and cements for the future?. Chemical reviews, 116(7), 4170-

4204.

Mg(OH)2 + CO2 + 2H2O → MgCO3.3H2O  Carbonation

MgO + H2O → Mg(OH)2 Hydration

Overview on Reactive MgO Cement



Some problems associated with RMC

32

Walling, S. A., & Provis, J. L. (2016). Magnesia-based cements: a journey of 150 years, and cements for the future?. Chemical reviews, 116(7), 4170-4204.

Portland Cement Association. 2021. Corrosion of Embedded Materials. [online] Available at: <https://www.cement.org/learn/concrete-
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Problems

low alkaline 

environment 

makes steel 

reinforcement 

vulnerable to loss 

of protective oxide 

layer

high risk of corrosion

Proposed Solutions

Use of high-

performance 

concrete 

incorporating micro-

synthetic fibers

Higher tensile and flexural strengths, 

and crack mitigation

Restrict volume change, limit ingress of 

moisture and ions, and improve 

corrosion response

Hydration and 

carbonation of 

MgO lead to a 

larger unit 

volume

Induces 

cracking under 

restraint

Material at micro 

level to improve its 

properties



Transmission Electron 

Microscope (TEM)

Atomic Force 

Microscope (AFM)
X-Ray Diffractometer 

(XRD)
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TEM | In-situ experiments for hydration and carbonation reactions of RMC
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