

Supporting Partner

5 - 8 DECEMBER 2022 DUBAI WORLD TRADE CENTRE

Reducing carbon emission in geotechnical construction

Nicol Chang SESSION NAME/DATE/TITLE

	WORLD GREEN BUILDING COUNCIL	SUST DEVEL G	AINABLE OPMENT ALS	Green buildings	Green buildings use 'circular' principles, where resources			
Green buildings can improve people's health & wellbeing	Green buildings can use renewable energy, becoming cheaper to run	Building green infrastructure creates jobs & boosts the economy	Green building design can spur innovation & contribute to climate resilient infrastructure	Green buildings are the fabric of sustainable communities & cities	aren't wasted	Green buildings produce fewer emissions, helping to combat climate change	Green buildings can improve biodiversity, save water resources & help to protect forests	Through building green we create strong, global partnerships
3 GOOD HEALTH AND WELL-BEING	7 AFFORDABLE AND CLEANENERGY	8 DECENT WORK AND ECONOMIC GROWTH	9 INDUSTRY, INNOVATION AND INFRASTRUCTURE	11 SUSTAINABLE CITIES	12 RESPONSIBLE CONSUMPTION AND PRODUCTION	13 climate	15 LIFE ON LAND	17 PARTINERSHIPS FOR THE GOALS

Global warming, CO₂ emission and geohazards

Greenhouse gases consist of CO₂, CH₄, N₂O

Contribution from construction industry

IEA 2021, Tracking Clean Energy Progress 2021

Emissions throughout construction process

Type of CO₂ emission in construction

Scope 1: Direct emissions (fuel on site)

Scope 2: Indirect emissions (electricity supplied by grid)

Scope 3: Other indirect emissions (embodied in materials and transportation)

Organized by

Type of CO₂ emission in construction

Keller produced 176,000 tons CO_2e across scopes 1 and 2 (2019). This is equivalent to 38,000 cars running for one year and would take a forest the size of Madrid to draw down this carbon.

Materials (concrete/steel/cement based solutions)

EFFC-DFI Carbon calculator

EFFC SOME FINAN carbone 4 V2.2 www.carbone4.com

Techniques covered:

- Bored piles
- **Displacement piles**
- Micro piles
- Diaphragm and slurry walls
- Sheet pile walls
- Grouting
- Soil Mixing
- Pile walls
- Anchors
- Soil Nails
- Jet Grouting
- Stone Columns
- Vibro Compaction
- Dynamic compaction
- Vertical Drains

#THEBIG5EXHIBITION

www.thebig5.ae

- Defra and Uni of Bath (UK)
- EPA (US)
- Bilan Carbone (France)

Organized by

000,5,000 4,000 Energy 3,200 Materials 3,000 2,000 760 1,000 390 DSM Pile VR DC

Hierarchy of carbon reduction

Potential for sustainable decisions

Structure & foundation type (Piling vs GI)

Green mix, recycled steel/aggregate

Planning stage

Site choice

Design stage

Value engineering

Construction stage

(beware of transportation)

Energy efficiency on site

Replacing generators with solar

Equipment efficiency (engine efficiency

class, equipment using alternative fuel)

Pantelidou et al (2012)

Project stage

dmg::events

CO₂ emissions from geotechnical projects

When can we use ground improvement?

Topolnicki, 2018

Case study 1: Logistics park

- Logistics park on soft soils
- ~45000 rigid inclusions to 32m depth
- Total 1108 kgCO₂ per RI installed

Change original concrete mix to include fly ash (by product of burning coal)

Case study 2: Tank foundation

- Original design was piles
- Keller proposed two alternative techniques: DSM and DC+VR (satisfying project requirements)
- Eco solutions:
 - Piling 70% OPC replaced by GGBS, 40% rebar recycled steel
 - DSM: 70% of OPC is replaced by GGBS.
 - VR: 50% of aggregates is recycled or recovered

Case study 3: Shopping mall

- 187no columns, loads up to 16500kN
- Original design was ~1100 CFA piles, 80cm dia, 12m long.
- Alternative design ~3300 DSM col, 90cm dia, 5.5m long.
- Quantities
 - +31% total length
 - -27% foundation volume
 - -42% reinforcement
 - -45% cost saving

Case study 4: Dwall project

- Original design 1.2m thick diaphragm wall, C40/50 concrete.
- Value engineering to 1.0m thick dwall with C50/60 concrete.
- Use more carbon intensive concrete mix to achieve
 - 7.5% saving on concrete volume,
 - 4.4% saving on steel reinforcement
 - 270t reduction on CO2e
 - £1.2m saving on project cost

A pathway to achieving carbon reduction

1. Measure!

- What to measure?
- How to measure?
- Estimate carbon footprint & hotspots
- Determine the baseline

- 2. Identify ways forward
- Right people in the room
- Get all the ideas, big & small
- Bring in other stakeholders
- Documentation

- 3. Trial initiatives
 - Collaborate with
 - Collaborate wit partners
 - Prioritise initiatives
 - Implement actions
 - Understand challenges
 - Look at scalability
 - Create action plans

- 4. Targets
- Leading targets
- Feasibility / scalability of targets
- Informs lagging targets for Scope 1 & 3

#THEBIG5EXHIBITION www.thebig5.ae

Organized by

The take home...

- Construction industry generates ~20% of global CO₂ emissions (throughout the construction process)
- Highest potential for sustainable decisions during project planning stage
- Biggest impact when focused on scope 3 (materials) emissions
- Ground improvement solutions have lower carbon footprint (compared to cement and steel based solution)
- There is an overlap where ground improvement is equally applicable as piling solutions
- Consider the overall savings (geo-solutions, civil works, transportation etc) when making decisions

Organized by

Facilities Geotechnical Management & Engineering

Project Management Solar

Stone Design

Technology