

5 - 8 DECEMBER 2022 DUBAI WORLD TRADE CENTRE

Durability Design of RC Structures Mohamad Nagi

Concrete Talks by ACI

American Concrete Institute

כולמו تتقد

Durability Design of RC Structures

Durability Design and Service Life

American Concrete Institute

Durability Design

- What is concrete durability
- Designing durable concrete structures
- Service life of RC structures in the Gulf region
- Recommendation for enhancing the durability and service life of RC structures in the ME.

What is Durability

Durability by definition is the ability of concrete to resist weathering action, chemical attack, and abrasion while maintaining its desired engineering properties

Concrete ingredients, proportions and interaction

Placement and curing

Durability Design

The art of durability design is to combine technically suitable methods in the best combination to produce the most cost effective solution

Service life

Degradation models and QA
 Assessment and Repair

Traditional Durability Requirments

		Exposure Categories	Max. w/cm	Min. Design Compressive Strength, MPa (psi)
	Freezing and thawing	FO (Not applicable) – for concrete not exposed to cycles of freezing and thawing	_	17 (2500)
F		F1 (Moderate) – Concrete exposed to freezing and thawing cycles and occasional exposure to moisture (and no deicing chemicals)	0.55	24 (3500)
		F2 (Severe) - Concrete exposed to freezing and thaw- ing cycles and in continuous contact with moisture	0.45	31 (4500)
		F3 (Very Severe) – Concrete exposed to freezing and thawing cycles that will be in continuous contact with moisture and exposure to deicing chemicals or seawater [†]	0.40	35 (5000)
	Sulfates***	S0 (Not applicable) - Soil: SO ₄ <0.10% - Water: SO ₄ <150 ppm	_	_
c		\$1 (Moderate) - Soil: 0.10% ≤ SO ₄ < 0.20% - Water: 150 ppm ≤ SO ₄ <1500 ppm - Seawater	0.50	28 (4000)
5		<pre>\$2 (Severe)[‡] - Soil: 0.20% ≤ \$04 < 2.0% - Water: 1500 ppm ≤ \$04 <10,000 ppm</pre>	0.45	31 (4500)
		S3 (Very severe)‡ - Soil: SO4 > 2.0% - Water: SO4 >10,000 ppm	0.40*	35 (5000)**
C	Corrosion Cl-	CO (Not applicable) – Concrete that will be dry or protected from moisture in service		17 (2500)
		C1 (Moderate) – Concrete exposed to moisture but not to an external source of chlorides in service	_	17 (2500)
		C2 (Severe) – Concrete exposed to moisture and an external source of chlorides in service	0.40	35 (5000)

Updating Design Codes Based on Durability Requirements

Line	Line Change proposal material in strikeout/underline (code or commentary text, figures, tables,									
#	etc.)									
10	ACI 318-14 Table 19.3.2.1—Requirements for concrete by exposure class									
	Exposure Class	Max w/cm	Min f´ə psi	<u>Max R,</u> <u>Coulomb</u>	5	Additional Requirements			ts	
					Maximum w (Cl ⁻) conten wei	Maximum water-soluble chloride ion (Cl ⁻) content in concrete, percent by weight of cement ⁽⁷⁾		ride ion cent by	Additional	
					Nonprestre concret	essed e	Prestressed concrete		provisions	
	C0	N/A	2500		1.00		0.06		None	
	C1	N/A	2500		0.30		0.06		None	
	<u>C2 (Opt 1)</u> C2 (Opt 2)	0.40 <u>N/A</u>	5000 <u>N/A</u>	<u>N/A</u> 1500 ⁽⁹⁾	0.15	0.15		.06	Concrete cover ⁽⁸⁾	
					Maximum water-so (CF) content in cor weight of a	Aaximum water-soluble chloride ion (CI ⁻) content in concrete, percent by weight of cement ^[7]				
1				Nonprestressed concrete	Prestre concr	essed rete	Additional provisions			
C0	1	N/A		17	1.00 0.06		None			
C1	1	A/A		17	0.30	0.0	6			
C2	(0.40		5 0.15 0.06 Concrete cover ^[8]						

Designing Durable Structures

ACI 318
AASHTO
EUROCODE 2
BS 5400
BS 8500

Summary of Additional Durability Enhancement Techniques

Admixtures	Reinforcement	Surface	Electrochemical
Waterproofers Corrosion Inhibitors	Unreinforced Design Corrosion Resistant Steel Coated Rebar Galvanized FRP	Controlled Permeability Formwork Sealers Coatings	Monitoring Provision for CP CP at outset

Service Life

- The period of time during which a structure meets or exceeds the minimum requirements set for it
- Requirements limitation can be technical, functional or economical
- Durability
 - ASR
 - Sulfate attack
 - Corrosion

Degradation Mechanisms

Physical attack

Chemical attack

- Salt crystallization
- Freezing-and-thawing attack
- Abrasion, erosion, and cavitation
- Thermal damage

- Leaching
- Acid and base attack
- Alkali-silica reactions
- Delayed ettringite formation
- Sulfate attack
- Steel reinforcement corrosion

Sulphate Attack

A reaction between sulphate ions and calcium hydroxide and form gypsum and ettringite.

BRE and ACI 201 Classification in UAE
 Low w/c ration and use of SCM

What is Corrosion

- Deterioration of a material as a result of reaction with its environment-M.G. Fontana
- Metal corrode because they have a strong driving force to return to their natural state

Kyosti Tuuti's Service Life Model

MEDRC Experimental Program

Selected Concrete Mix Design.

Laboratory Tests

Service Life Prediction

Field Testing Stations

Laboratory Testing Program

Standard Durability tests.

ASTM G 109 Testing Program

Service Life Monitoring Parameters

ASTM G 109 Specimens

Further Research to Improve our Understanding of SLP

Chloride Migration vs. Diffusion

Conclusions

- Art of durability design is to combine technically suitable methods to achieve most effective solution
- Durability assessment plan is required to match the design with environmental conditions
- Corrosion is the main durability factor leads to deterioration of concrete structures
- Gulf region is the most corrosive loctation in the world
- Structural design of major structures currently include durability design required to achieve the design service life

Use of corrosion protection systems such as corrosion inhibitors extend the service life of structures as well

Thank you

For the most up-to-date information please visit the American Concrete Institute at: www.concrete.org

כולםן זוה

American Concrete Institute

Talks

Facilities Management Geotechnical & Engineering

Talks

Solar

Project Management

Stone Design

Technology

Urban Design & Landscape