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What exactly is AI? Geotechnical .

& Engineering

Al is a computational technique that attempts to mimic, in a very simplistic way, the
human cognition ability (e.g. brain, genes, nerve system) to think and learn on its own.

It is a simulation of human intelligence into machines to do tasks that we would
normally rely on humans to perform.
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What exactly is Al? Geotechnical U/

& Engineering

Al models are data-driven models which means that they rely on the data alone to
determine the structure of a phenomenon (or system) without the need for
assumptions or simplifications about that system, which is in contrast to most
physically-based modelling techniques.

Decision
Data Al Al decision analysis by
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ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

DEEP LEARNING

Al refers to the capability of a machine to
perform a certain behavior; while ML is the
algorithm that learns patterns from datasets to
predict future outcomes, recognize patterns, or
suggest different classes to the data.
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The use of different Al techniques in some applications in geotechnical engineering

Unsaturated soils

Dams . Hm
Tunnelling and TBM I
Shallow and pile foundation |
Slope stability I
Landslide and liquefaction B |

Subgrade soil and pavement
Rock mechanic || I

Frozen soils and soils thermal properties

Key areas of geotechnical engineering

0 50 100 150 200 250

The number of studies

HANN ®FIS FEANFIS SVM mLSTM mMResNet ECNN BGAN B Other Al methods

Beghbani, A., Choudhury, T., Costa, S., Reiner, J. (2022). “Application of artificial intelligence in geotechnical engineering: A state-of-the-art review” Earth-Science Reviews 228,
https://doi.org/10.1016/j.earscirev.2022.103991.
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Artificial Neural Networks Seotechnical '
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Artificial Neural Networks (ANN) & Enginmering

Concept
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Examples of Applications:
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Dam Safety

©hdrinc.com

https://www.hdrinc.com/insights/digital-twin-diablo-dam-comes-life

The Diablo Dam was built in 1936 along the Skagit River in
northwestern Washington.

To ensure the dam’s safety, a digital twin (virtual replica of the
dam) was created merging real data obtained with embedded
sensor network and incorporating machine learning and
artificial intelligence to perform predictive analysis and
determine how asset and geotechnical conditions would
change with time (such as natural shifting, erosion of the
surrounding soil, automatically identify cracks and spalls)
allowing operators to take corrective actions to immediately
improve their targeted maintenance scheduling and help
ensure safe operations.


https://www.hdrinc.com/insights/digital-twin-diablo-dam-comes-life
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Slope Stability

- Real time monitoring of the site

- Plan ahead for optimum slopes

- Identify any misuse of personal protective equipment (e.g. safety helmet or vest)

- When a dangerous act is predicted, the system will alert the safety officer and inspector to
avoid injuries
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Examples of Applications Seotechnical S

Prediction of the load-settlement curve of Driven Piles

Py

Several in-situ full-scale pile load tests, as well as
cone penetration test (CPT) data were used to
develop Al model.

shart

The tests were conducted on sites of different soil
types and geotechnical conditions, ranging from
cohesive clays to cohesionless sands including
layered soils

T
\:‘\ac—ifp
\ 1

Driven pile
Shahin, M. A. (2014). “Load-settlement modelling of axially loaded drilled shafts using CPT-based recurrent neural networks.” International Journal of Geomechanics, ASCE, 14(6),
06014012(1-7).
Shahin, M. A. (2014). “Load-settlement modelling of axially loaded steel driven piles using CPT-based recurrent neural networks.” Soils and Foundations, 54(3), 515-522.
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Prediction of the load-settlement curve of Driven Piles

1 hidden layer

Input parameters at current state: Qutput at next loading state:

f R-tip - Weighted average friction
ratio over the pile tip failure zone
q c-shaft - Weighted average cone

point resistance over the pile

. - Qi

L o \ ¥
£ o - s 3
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Prediction of the load-settlement curve of Driven Piles
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Training set
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Validation set

?*"

A Testl © Test2
O Testé X Test?7
O Test12 s RNN Model

Load (kN)
Load (kN)

?

2000

A Test35 © Test36 O Test37 O Test 38 ——RNN Model

0 2 4 6 8 10 12 14 16 18 20 22

Pile settlement/pile diameter (%)
P Pile settlement/pile diameter (%)

Performance measure Training Validation

Coefficient of correlation, r 0.997 0.994

Coefficient of Determination, R? 0.993 0.974

Shahin, M. A. (2014). “Load-settlement modelling of axially loaded drilled shafts using CPT-based recurrent neural networks.” International Journal of Geomechanics, ASCE, 14(6),

06014012(1-7).
Shahin, M. A. (2014). “Load-settlement modelling of axially loaded steel driven piles using CPT-based recurrent neural networks.” Soils and Foundations, 54(3), 515-522.
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Prediction of the load-settlement curve of Driven Piles

How engineers can use the developed Al model?
Al models can be used to establish a relationship between inputs and outputs which can be implemented in a

simple user-friendly application.

Enter weighted average friction ratio over over pile embedment length:

Enter pile diameter (mm):
Enter pile embedment length (m):

Enter weighted average cone point resistance over pile tip failure zone (MPa):
Enter weighted average friction ratio over pile tip failure zone:

Enter weighted average cone point resistance over pile embedment length (MPa):

ANN Model for Load-Settlement Res|
By : Mohamed SHAH!

Please refer to the journal paper of model developer|

1 Load-Settlement curve

Bearing Capacity of Drilled Shafts (Bored Piles)

Run

w0 s 150

Settlemant/Diameter(%]
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Examples of Applications:
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Prediction of the Mechanical behavior of Railway Ballast

- Subgrade

L Diameter = 300 mm
Large-scale triaxial

apparatus Height = 600 mm

Al Model Features:

D, : diameter at which 50% of the specimens pass
through the sieve

C, : coefficient of uniformity

C, : coefficient of curvature

e: void ratio

Y : bulk unit weight (kN/m?3)

03: confining pressure

g; : axial strain (%)

Ag; :axial strain increment (%)

q; :deviator stress (kPa)
€,; :volumetric strain (%)

v,i

Shahin, M. A., Indraratna, B. (2006). “Modeling the mechanical behaviour of railway ballast using artificial neural networks”, Canadian Geotechnical Journal, 43: 1144-1152.
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Prediction of the Mechanical behavior of Railway Ballast
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Shahin, M. A,, Indraratna, B. (2006). “Modeling the mechanical behaviour of railway ballast using artificial neural networks”,
Canadian Geotechnical Journal, 43: 1144-1152.
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Fabric and Effective Stress Distribution in Internally Unstable Soils
filtration | (clogging)
Internal volume
erosion ¥ a
transport =
)
detachment / \
)&. g Modification of
- G the granular '
‘microstructure
Z Mechanical
» ? property
degradation
- Solid granular skeleton
Fluid flow deformation
Pore\ . ‘-‘ TRV A G g, N
space Modification of ' i : ' i
changing the granular .
_ microstructure A |

The collapse of Teton dam (Wikipedia)
Collapse of the

granular assembly
[llustration of the suffusion process (Sibille (2016)).
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Fabric and Effective Stress Distribution in Internally Unstable Soils

Case (1)
Coarse matrix
transfers stress

Fines do not participate in
stress transfer

Case (11)
Coarse particles
dominate stress-transfer

Case (1v)

Understressed fines
provide lateral support
to coarse matrix

Coarse and fine transfer
approximately equal stress

Different fabric cases (Shire et al. (2014))

Skempton and Brogan (1994) proposed that a stress-
reduction factor, a, can be defined as the proportion
of the overburden acting on the loose fraction in the
no flow condition:

/J _ !
O-fine =ao
where o'y, is the effective stress transferred by the

finer fraction; o’ overburden effective stress; and a is
stress-reduction factor.
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Fabric and Effective Stress Distribution in Internally Unstable Soils

Discrete element modeling “ ]
**** Al Expenimenta
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Al model
li
D5
li
85

FC

Output Layer

Hidden Layer

Input Layer

Model features:

D’,./d’ss: D’ represents the coarse fraction and
d’ represents the finer fraction

FC : Fines content (%)

G : Gap ratio

e : Void ratio
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Fabric and Effective Stress Distribution in Internally Unstable Soils

predicted o

Training set

12

10 A

0.5 1

0.6 1

0.4 1

0.2 4

00 02 04 06 08 10 12

12

104

predicted @

0.4

02

Validation set

0.8 1

0.6 1

00 02 04 08 08 10 12

measured o measured o
Performance measures Training Validation
Coefficient of correlation, r 0.924 0.917
Coefficient of Determination, R? 0.853 0.852
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Fabric and Effective Stress Distribution in Internally Unstable Soils

Dis
dgs @ = 5.46 + 4.48tanh H, + 3.82tanh H,
FC D’
a 15
H{=-0.08—-9.6——+0.71FC—-1.07e + 6.16G
e Output Layer ?)5,
H, =-1.81— 3.62T15+ 7.73FC — 8.36e + 2.05G
G Hidden Layer 85

Input Layer
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Fabric and Effective Stress Distribution in Internally Unstable Soils

Sensitivity analysis
127 055 A
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Fabric and Effective Stress Distribution in Internally Unstable Soils

Sensitivity analysis

121

10 4

0.8 4

5 06
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015
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20 25 30 35 40 45 5.0 55 6.0 04 05 0.6 0.7 08 09 10 11 12
DYyd’ Gap ratio (G)

The sensitivity analysis shows that the model is robust and able to reflect the role of important
parameters compared to the available geotechnical knowledge
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Benefits of Al seamey | QD

Can solve highly non-linear complex Identify profitable opportunities

engineering problems

Can deal with multi-dimensional

Can be updated
o ] T [T, e Allow for efficient management

or uncertain data

y ~ Ml Provide accurate results
Lower chance of errors
Reduce the cost of construction

Enhance decision-making

Il
|

Support predictive maintenance

Optimize performance of assets
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Limitations and Challenges & Enginmering «

Reliability of data
Criticized of being black boxes Oj
| Getting people on board
Extrapolation is questionable ® / g’

AN Changing entire processes is
o .
Trial-and-error approaches not simple
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